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Abstract
It is argued that the extended mode-coupling theory for glass transition predicts a dynamic
crossover in the α-relaxation time and in the self-diffusion constant as a general implication of
the structure of its equations of motion. This crossover occurs near the critical temperature Tc of
the idealized version of the theory, and is caused by the change in the dynamics from the one
determined by the cage effect to that dominated by hopping processes. When combined with a
model for the hopping kernel deduced from the dynamical theory for diffusion–jump processes,
the dynamic crossover can be identified as the fragile-to-strong crossover (FSC) in which the
α-relaxation time and the self-diffusion constant cross over from a non-Arrhenius to an
Arrhenius behavior. Since the present theory does not resort to the existence of the so-called
Widom line, to which the FSC in confined water has been attributed, it provides a possible
explanation of the FSC observed in a variety of glass-forming systems in which the existence of
the Widom line is unlikely. In addition, the present theory predicts that the Stokes–Einstein
relation (SER) breaks down in different ways on the fragile and strong sides of the FSC, in
agreement with the experimental observation in confined water. It is also demonstrated that the
violation of the SER in both the fragile and strong regions can be fitted reasonably well by a
single fractional relation with an empirical exponent of 0.85.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A fragile-to-strong dynamic crossover (FSC) phenomenon has
been observed in confined water in which the α-relaxation
time [1, 2] and the inverse of the self-diffusion constant [3]
cross over from a non-Arrhenius to an Arrhenius behavior.
The FSC is considered to be caused by the hypothesized
existence of the liquid–liquid critical point in water [4, 5]: it is
attributed to crossing of the Widom line (the line of maximum
correlation length) emanating from the liquid–liquid critical
point [6, 7].

On the other hand, it has been recognized that the viscosity
data on various glass-forming liquids exhibit an FSC-like
feature at a crossover temperature T0: while the temperature
dependence of the viscosity of many glass-forming liquids can
be well described by a power law for T > T0, it smoothly
crosses over to approximately an Arrhenius behavior for T <

T0 [8–10]. Recent measurements of diffusion constants in
bulk glass-forming alloys also display the crossover from
a non-Arrhenius to an Arrhenius behavior [11, 12]. Thus,
the FSC seems a common, or at least an unexceptional,
phenomenon in glass-forming systems, which is in contrast to
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a traditional view that a glass-forming liquid can be classified
either as fragile or strong [13]. Since it is unlikely that
the Widom line exists for most glass formers, there should
be some other mechanism which is responsible for the FSC.
In this paper, a possible scenario for the FSC is discussed
based on the extended mode-coupling theory (MCT) for glass
transition [14, 15], which does not resort to the presence of
the Widom line. This is motivated by the observation that
the mentioned crossover temperature T0, which is typically
located about 20% above the glass transition temperature Tg,
is considered to coincide with the critical temperature Tc of the
idealized version of MCT [10, 11].

This paper is organized as follows. In section 2, we argue
that the extended MCT predicts a dynamic crossover in the α-
relaxation time and in the self-diffusion constant at T ≈ Tc as
the dynamics changes from the one determined by the cage
effect to that dominated by hopping processes. Numerical
results are presented in section 3 to demonstrate the theoretical
prediction. The paper is summarized in section 4 with some
concluding remarks.

2. Theory

In this section, we argue that the extended MCT predicts a
dynamic crossover in the α-relaxation time and in the self-
diffusion constant and that this crossover occurs near the
critical temperature Tc of the idealized version of the theory.
We start from surveying basic features of the idealized [16]
and extended [14, 15] MCT. A system of N spherical particles
of mass m distributed with the average number density ρ

shall be considered. Structural changes as a function of time
t are characterized by coherent density correlators φq(t) =
〈ρ∗

�q eiLtρ�q〉/N Sq which are normalized to unity at t = 0.
Here ρ�q = ∑

i exp(i�q · �ri ), with �ri referring to the i th
particle’s position, denotes density fluctuations for wavevector
�q; L the Liouville operator; 〈· · ·〉 the canonical averaging for
temperature T ; Sq = 〈ρ∗

�q ρ�q〉/N the static structure factor; and
q = |�q|.

The idealized-MCT equations consist of the exact
Zwanzig–Mori equation:

∂2
t φq(t) + �2

qφq(t) + �2
q

∫ t

0
dt ′mq(t − t ′)∂t ′φq(t

′) = 0 (1)

in which �2
q = q2kBT/mSq with Boltzmann’s constant kB,

and the following idealized-MCT expression for the memory
kernel to be denoted as m id

q (t):

m id
q (t) =

∫

d�k V (�q; �k, �p)φk(t)φp(t). (2)

Here V (�q; �k, �p) = ρSq Sk Sp[(�q ·�k)ck+(�q · �p)cp]2/[2(2π)3q4],
�p = �q − �k and cq = (1 − 1/Sq)/ρ. The idealized-MCT
equations (1) and (2) exhibit a bifurcation for φq(t → ∞) =
fq —also referred to as the nonergodic transition—at a critical
temperature Tc [16]. For T > Tc, the correlator relaxes towards
fq = 0 as expected for ergodic liquid states. On the other hand,
density fluctuations for T � Tc arrest in a disordered solid,
quantified by a Debye–Waller factor fq > 0.

The extended-MCT equations also consist of the
Zwanzig–Mori equation (1), but the memory kernel entering
there has the following extended form:

mq(z) = m id
q (z)/[1 − δq(z)m

id
q (z)] (3)

with an additional kernel δq(z), called the hopping kernel,
which takes into account the effect from hopping processes.
Here we have introduced the Laplace transform with the
convention f (z) = i

∫ ∞
0 dt eizt f (t) (Im z > 0). The extended

memory kernel mq(z) in (3) thus deals with the interplay of
two effects. Nonlinear interactions of density fluctuations, as
described by the idealized memory kernel m id

q (z), lead to the
cage effect with a trend to produce arrested states for T � Tc.
On the other hand, the hopping processes, taken into account
via the hopping kernel δq(z), lead to the α relaxation and
restore ergodicity at all temperatures (see below). A model
for the hopping kernel shall not be specified here (see section 3
for the model adopted in the present work) since our argument
below does not depend on the specific model for δq(z).

It is more convenient for the following discussion to
reformulate the extended-MCT equations in the form

φq(z) = −1/[z + Kq(z)] (4)

in terms of the Laplace form Kq(z) of the longitudinal current
correlator. Combining the Laplace transform of (1), φq(z) =
−1/{z − �2

q/[z + �2
qmq(z)]}, with (3), one finds [17]

Kq(z) = δq(z) − �2
q[1 + R(2)

q (z)]
z + [1 + R(1)

q (z)]�2
qm id

q (z)
. (5)

Here R(1)
q (z) = −zδq(z)/�2

q and R(2)
q (z) = zδq(z)[1 −

δq(z)m id
q (z)]/�2

q are renormalization functions, which are
unimportant in the low-frequency regime z → 0 (or the long-
time regime) of interest. Neglecting these terms, the function
Kq(z) gets the following transparent form:

Kq(z) = δq(z) + K id
q (z)

with K id
q (z) = − �2

q

z + �2
qm id

q (z)
. (6)

Dropping δq(z), this equation reduces to the one of the
idealized MCT, Kq(z) = K id

q (z): approaching the critical
temperature Tc from above, m id

q (z) becomes larger due to
the cage effect and the current correlator Kq(z) vanishes at
T = Tc, leading to the sharp nonergodic transition. In
the presence of δq(z), on the other hand, the term K id

q (z)
becomes unimportant when m id

q (z) becomes large and there
holds Kq(z) ≈ δq(z). The hopping kernel takes over and
hinders the currents from vanishing, thereby preventing the
density fluctuations from becoming arrested completely. Thus,
there occurs a dynamics crossover at T ≈ Tc from the
cage-effect-dominated regime, where Kq(z) ≈ K id

q (z), to the
hopping-dominated regime, in which Kq(z) ≈ δq(z).

Let us see an implication of such a crossover for the α-
relaxation time τq of the coherent density correlator φq(t),
which can be estimated from τq ∼ ∫ ∞

0 dt φq(t), i.e. iτq ∼
φq(z → 0). In view of (4), one understands that Kq(z → 0)

2
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is connected to τq via Kq(z → 0) ∼ i/τq . Equation (6) then
implies

1/τq ≈ 1/τ hop
q + 1/τ id

q (7)

in which we have introduced τ
hop
q due to the hopping processes

via δq(z → 0) = i/τ hop
q . Thus, the extended MCT predicts a

dynamic crossover in the α-relaxation time τq at T ≈ Tc from
τq ≈ τ id

q to τq ≈ τ
hop
q .

We next turn our attention to the tagged-particle dynamics.
Of special interest here is the self-diffusion constant D, which
is given by the integral D = ∫ ∞

0 dt K s(t) of the velocity
autocorrelation function K s(t) = 〈�vs(t) · �vs(0)〉/3 [18].
Hereafter, quantities referring to the tagged particle (labeled
s) shall be marked with the superscript or subscript ‘s’ and
�vs(t) denotes the velocity of the tagged particle at time t .
The Zwanzig–Mori equation for the tagged-particle density
correlator φs

q(t) = 〈ρs∗
�q eiLt ρs

�q〉 with ρs
�q = exp(i�q · �rs)

has the same form as (1) with φq , mq and �2
q replaced

by φs
q , ms

q and (�s
q)

2 = q2kBT/m, respectively; the
idealized-MCT memory kernel corresponding to (2) is given
by msid

q (t) = ∫
d�k V s(�q; �k, �p)φk(t)φs

p(t) with V s = ρSk[(�q ·
�k)ck]2/[(2π)3q4] [19]; and the extended memory kernel is
given by (3) with mq , m id

q and δq replaced by ms
q , msid

q and
δs

q , respectively. The arrested part f s
q of the correlator φs

q(t)
in the idealized theory is referred to as the Lamb–Mössbauer
factor.

Let us note that K s(t) and the mean-squared displacement,
δr 2(t) = 〈[�rs(t) − �rs(0)]2〉, are related via K s(t) =
(1/6)∂2

t δr 2(t). Therefore, the extended-MCT equations for
K s(t) can be deduced from those for δr 2(t), which have been
derived in [15] exploiting the small-q behavior of φs

q(t) =
1−q2δr 2(t)/6+O(q4) [18]. The resulting equations for K s(t)
consist of the Zwanzig–Mori equation:

∂t K s(t) + v2
∫ t

0
dt ′ms(t − t ′)K s(t ′) = 0 (8)

in which v2 = kBT/m, and the following expression for the
memory kernel:

ms(z) = msid(z)/[1 − δs(z)msid(z)]. (9)

Here ms(t) = limq→0 q2ms
q(t) and δs(z) = limq→0 δs

q(z)/q2.
Combining the Laplace transform of (8), K s(z) = −v2/[z +
v2ms(z)], with (9), one finds

K s(z) = δs(z) − v2[1 + Rs(2)(z)]
z + [1 + Rs(1)(z)]v2msid(z)

. (10)

Again, Rs(1)(z) = −zδs(z)/v2 and Rs(2)(z) = zδs(z)[1 −
δs(z)msid(z)]/v2 are renormalization functions, which are
unimportant in the low-frequency regime z → 0. Neglecting
these terms, there holds

K s(z) = δs(z) + K sid(z)

with K sid(z) = − v2

z + v2msid(z)
. (11)

Since K s(z → 0) = iD, this relation implies

D ≈ Dhop + Did (12)

in which we have introduced Dhop via δs(z → 0) =
iDhop. Thus, the extended MCT predicts that the self-diffusion
constant D also exhibits a dynamic crossover at T ≈ Tc from
D ≈ Did to Dhop.

3. Results and discussion

In the following, numerical results of the theory are presented
for the Lennard-Jones (LJ) system in which particles interact
via the potential V (r) = 4εLJ{(σLJ/r)12−(σLJ/r)6}. Hereafter,
all quantities are expressed in reduced units with the unit of
length σLJ, the unit of energy εLJ (setting kB = 1) and the
unit of time (mσ 2

LJ/εLJ)
1/2. The static structure factor Sq ,

which is required for determining �2
q , m id

q (t) and msid
q (t), shall

be evaluated within the Percus–Yevick approximation [18].
The critical temperature of the idealized MCT for this model
is found to be Tc = 1.637 for the average number density
ρ = 1.093 [20] to be considered in the present work.

As a model for the hopping kernel entering into the
extended MCT, we shall adopt the one developed in [15].
In this model, the hopping processes are incorporated via
the dynamical theory [21] originally formulated to describe
diffusion–jump processes in crystals. The dynamical theory
approach treats hopping as arising from vibrational fluctuations
in the quasi-arrested state where particles are trapped inside
their cages, and the resulting hopping rate whop under the
isotropic Debye approximation is [15]

whop = 1

2π

(
3

5

)1/2

ωD exp

[

−3mv2
L

2kBT
2

]

(13)

in terms of the sound velocity vL = √
kBT/mS0(1 − f0) in

the quasi-arrested state, which is renormalized by the Debye–
Waller factor f0 = limq→0 fq [20, 22]. ωD = kDvL with kD =
(6π2ρ)1/3 denotes the Debye frequency.  is a dimensionless
measure of the critical size of the phonon-assisted fluctuation
needed to cause a hopping and we set 2 = 0.10 in the present
work which is estimated in [21] from migration properties of
crystals. We notice that this value of 2 is consistent with
the Lindemann length [15]. The collective and tagged-particle
hopping kernels are then given by

δq(z) = δs
q(z)/Sq ,

δs
q(z) = iwhop Nc

[
1 − sin(qa)/(qa)

]
/ f s

q . (14)

Here Nc is the coordination number of the first shell
surrounding a particle and a denotes the hopping distance
which is assumed to be given by the average interparticle
distance. (See [15] on how Nc and a can be evaluated based
on the knowledge of the radial distribution function.)

Figure 1 shows the coherent density correlator φq(t) at
the peak position q = 7.3 of the static structure factor for
representative temperatures near Tc whose values are specified
in the caption. The dashed curves refer to the idealized-MCT
results, which exhibit the bifurcation of the long-time limit
at T = Tc, i.e. φq(t → ∞) = 0 for T > Tc, whereas
φq(t → ∞) = fq > 0 for T � Tc [16]. The solid
curves denote the results from the extended MCT, according to
which the density correlator eventually relaxes to zero even for

3
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Figure 1. Coherent density correlator φq(t) at the peak position
q = 7.3 of the static structure factor for temperatures T = Tc(1 − ε)
with Tc = 1.637 and ε = −0.10, −0.05, −0.03, −0.01, +0.01,
+0.05 and +0.10 (from left to right). The solid curves denote the
results from the extended MCT. The dashed curves refer to the
results from the idealized MCT, which exhibit the bifurcation of the
long-time limit at T = Tc, i.e., φq(t → ∞) = 0 for T > Tc (ε < 0),
whereas φq(t → ∞) = fq > 0 for T � Tc (ε � 0).

T � Tc due to the presence of the hopping processes. One also
infers from figure 1 that the hopping processes start to affect
the density fluctuations at the temperature about 3% above Tc.

The α-relaxation time τq∗ of the coherent density
correlator at the structure factor peak q∗ = 7.3 is plotted in
figure 2 versus the inverse temperature Tc/T . Here the α-
relaxation time is defined with the convention φq(τq) = 0.1.
The dashed curve refers to τ id

q∗ from the idealized MCT, which
diverges at Tc/T = 1 reflecting the mentioned bifurcation
predicted by the idealized theory. Such a divergence is
described by a power law τ id

q∗ ∼ |T − Tc|−γ [16]. The solid
curve denotes the result from the extended MCT, in which the
divergence predicted by the idealized theory is replaced by a
smooth crossover.

The behavior of the α-relaxation time from the extended
MCT can be understood on the basis of (7), according to which
τq∗ is determined by the smaller one of τ

hop
q∗ and τ id

q∗ . τ
hop
q∗ from

our model for the hopping kernel is included in figure 2 as the
dashed–dotted curve. (We notice that fq and f s

q evaluated at
T = Tc enter (13) and (14) for T � Tc since they determine
the plateau height of the density correlators for this temperature
regime [16], while T -dependent fq and f s

q enter the ones for

T < Tc. This explains why τ
hop
q∗ = i/δq∗(z → 0) from our

model for the hopping kernel exhibits a square-root singularity
near Tc/T = 1 [16].) One understands that τq∗ agrees well
with τ id

q∗ for Tc/T < 1 since τ id
q∗ < τ

hop
q∗ holds there, and the

α-relaxation time in this temperature regime can be fitted well
by a non-Arrhenius power law. On the other hand, τq∗ crosses
over to τ

hop
q∗ for Tc/T > 1 since τ id

q∗ > τ
hop
q∗ holds there, and

one infers from figure 2 that τq∗ at low temperatures is nearly
Arrhenius. Thus, the α-relaxation time predicted by the present
theory exhibits the FSC at T ≈ Tc.

Figure 2. The α-relaxation time τq∗ of the coherent density
correlator at the structure factor peak q∗ = 7.3 versus the inverse
temperature Tc/T . The solid curve denotes the result from the
extended MCT. The dashed curve refers to τ id

q∗ from the idealized
MCT, which diverges at Tc/T = 1 with a power law
τ id

q∗ ∼ |T − Tc|−γ [16]. The dashed–dotted curve represents τ
hop
q∗ due

to the hopping processes introduced in (7).

Figure 3. Self-diffusion constant D versus the inverse temperature
Tc/T . The solid curve denotes the result from the extended MCT.
The dashed curve refers to Did from the idealized MCT, which
vanishes at Tc/T = 1 with a power law Did ∼ |T − Tc|γ reflecting
the dynamical arrest predicted by the idealized theory [16]. The
dashed–dotted curve represents Dhop due to the hopping processes
introduced in (12).

Figure 3 shows the corresponding result for the self-
diffusion constant D: the solid curve denotes the result from
the extended MCT; the dashed curve refers to Did from
the idealized MCT, which vanishes at Tc/T = 1 with a
power law Did ∼ |T − Tc|γ reflecting the dynamical arrest
predicted by the idealized theory [16]; and the dashed–dotted
curve represents Dhop due to the hopping processes introduced

4
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Figure 4. Double-logarithmic representation of the self-diffusion
constant D versus the α-relaxation time τq∗ of the coherent density
correlator at the structure factor peak q∗ (solid curve). The arrow
indicates the location of Tc. The dotted line refers to the SER
prediction ∼τ−1

q∗ , while the dashed (∼τ−0.73
q∗ ) and dashed–dotted

(∼τ−0.95
q∗ ) curves to fractional relations (see the text). Inset: D versus

τq∗ from the main panel (solid curve) is compared with the fractional
relation ∼τ−0.85

q∗ (dashed curve).

in (12). Again, the behavior of D from the extended MCT can
be understood on the basis of (12): D is determined by the
larger one of Dhop and Did, and this explains why D crosses
over from D ≈ Did to Dhop at Tc/T ≈ 1. In addition,
one infers from figure 3 that D exhibits nearly an Arrhenius
behavior at low temperatures. Thus, the self-diffusion constant
D predicted by the present theory also exhibits the FSC at
T ≈ Tc.

Let us now turn our attention to the Stokes–Einstein
relation (SER) according to which the self-diffusion constant
is inversely proportional to the α relaxation time, D ∼ τ−1

q∗ .
(We confirmed that τq∗ is proportional to the viscosity divided
by the temperature, η/T , which can also be calculated from the
extended MCT. The α-relaxation time τq∗ is therefore used as a
substitute for η/T in the present work.) The SER is known to
be accurate for normal- and high-temperature liquids. The SER
holds also within the idealized MCT since it predicts that both
τq∗ and 1/D exhibit a universal power-law behavior |T −Tc|−γ

for T → Tc+ [16]. On the other hand, as already demonstrated
in [15], the extended MCT predicts the breakdown of the SER
near and below Tc which is in agreement with experimental
observations in glass-forming liquids [23–25]. Here, we shall
therefore focus on whether the SER breaks down in different
ways on the fragile and strong sides of the FSC, motivated by
such an observation in confined water [26].

The solid curve in figure 4 shows D versus τq∗ in a log–log
scale calculated from the extended MCT. It is seen that, while
the SER holds at high temperatures (cf the dotted curve), the
SER breaks down for temperatures near and below Tc. Such
a violation of the SER is conventionally fitted by a fractional
relation D ∼ τ−x

q∗ with some exponent 0 < x < 1. However,
without any theoretical foundation, it is difficult to perform a
physically meaningful nonlinear fit by the fractional relation.

In this regard, we notice a recent theoretical investigation
of the SER violation which is based on two classes of
kinetically constrained models, one describing diffusion in a
fragile glass former and the other in a strong glass former [27].
The main result of [27] is that, while in the fragile case D ∼
τ−0.73

q∗ which is weakly dependent on the dimensionality d , in

the strong case the violation is sensitive to d , and D ∼ τ
−2/3
q∗

for d = 1 and D ∼ τ−0.95
q∗ for d = 3.

It is seen from figure 4 that the fractional relations
predicted by the kinetically constrained models (cf the dashed
and dashed–dotted curves) fit our theoretical result well both in
the fragile and strong regions. (Here we have used the exponent
0.95 for d = 3 in the strong region since it is appropriate for
our LJ system.) Such an observation is in agreement with the
experimental result for confined water in which the fractional
relations with the exponents 0.73 and 2/3 are found to fit the
data for the fragile and strong sides, respectively [26]. (Here
the exponent 2/3 is appropriate for the strong side since water
studied in [26] is confined in d = 1 cylindrical tubes.)

In the inset of figure 4, it is demonstrated that the violation
of the SER in both the fragile and strong regions can be fitted
reasonably well by a single fractional relation D ∼ τ−0.85

q∗ .
However, since a theoretical foundation is lacking for the
exponent 0.85, such a fit should be considered as an empirical
one.

4. Concluding remarks

In this paper, it is argued that the extended MCT predicts a
dynamic crossover in the α-relaxation time and in the self-
diffusion constant as a general implication of the structure
of its equations of motion. This crossover occurs near the
critical temperature Tc of the idealized version of the theory
and is caused by the change in the dynamics from the one
determined by the cage effect to that dominated by hopping
processes. When combined with the model for the hopping
kernel developed in [15], the dynamic crossover can be
identified as the FSC (see figures 2 and 3). Since our theory
does not resort to the presence of the Widom line, to which
the FSC in confined water is attributed [6, 7], it provides
a possible explanation of the FSC observed in a variety of
glass-forming systems [8–12]. Such an explanation based
on the extended MCT seems reasonable since the crossover
temperature ≈ 1.2Tg found in experiments is considered to
coincide with Tc [10, 11].

The extended MCT also predicts that the SER breaks
down in different ways on the fragile and strong sides of the
FSC, in accord with the experimental observation in confined
water [26]. This is illustrated in figure 4 in which the
extended-MCT result is fitted with two fractional relations with
exponents taken from kinetically constrained models for fragile
and strong glass formers [27]. It is also demonstrated that the
violation of the SER in both the fragile and strong regions can
be fitted reasonably well by a single fractional relation with an
empirical exponent 0.85 (see the inset of figure 4).

The results of the present work indicate the physical
significance of the concept of Tc: it serves as the crossover
temperature at which qualitative changes of behavior take place
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in glass-forming systems. Besides the FSC, the breakdown of
the SER also occurs near and below Tc as demonstrated in
figure 4. In addition, many features of so-called dynamical
heterogeneities set in at T ≈ Tc [15]. Furthermore, Tc can be
considered as an onset temperature of the boson peak [20, 22].
In contrast, no singular characteristics from a physical point
of view can be observed in the vicinity of the traditional glass
transition temperature Tg.
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[11] Zöllmer V, Rätzke K and Faupel F 2003 Phys. Rev. Lett.

90 195502
[12] Faupel F, Frank W, Macht M-P, Mehrer H, Naundorf V,

Rätzke K, Schober H R, Sharma S K and Teichler H 2003
Rev. Mod. Phys. 75 237

[13] Angell C A 1991 J. Non-Cryst. Solids 131–133 13
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